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Abstract

This paper extends the real options literature by discussing an investment problem, where a ®rm has to determine

optimal investment timing and optimal capacity choice at the same time under conditions of irreversible investment

expenditures and uncertainty in future demand. After the project is installed with a certain maximum capacity, this

capacity is ®xed as an upper boundary to the output and cannot be adjusted later on. It turns out that, in the framework

of this once and for all decision, uncertainty in future demand leads to an increase in optimal installed capacity. But on

the other hand it causes investment to be delayed to an extent that even small uncertainty makes waiting and accu-

mulation of further information the optimal decision for large ranges of demand. Limiting the capacity which may be

installed weakens this extreme e�ect of uncertainty. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Investment analysis; Dynamic programming

1. Introduction

When a ®rm has the opportunity to invest in a
project, its interest is to ®nd the optimal invest-
ment strategy using the full freedom of choice that
is restricted by technical, administrative or legal
constraints. Moreover the ®rm has to consider that
there might be uncertainty in future values of
several input quantities concerning this decision.
In most cases the investment time is not exoge-
nously ®xed. This together with the fact that in-

vestment expenditures are at least partially
irreversible, makes investment timing one of the
main instruments to optimize the ®rm's strategy.
Evaluation of investment opportunities using
classical Net Present Value calculation ignores this
freedom in timing and that is why more detailed
approaches are asked. There are a number of
publications ± most popular Dixit and Pindyck
(1994) ± that discuss optimal investment timing in
the framework of irreversibility and uncertainty,
and point out the parallels between investment
opportunities and American call options and, as a
consequence, the existence of opportunity costs
which fundamentally in¯uence the investment be-
havior. Furthermore they show the applicability of
option pricing methods to determine the value of
an option to invest.
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When the project's design o�ers some addi-
tional freedom of choice this real options ap-
proach and the underlying standard timing model
have to be extended. As capacity choice is typically
one of the decisions related closely to investment
decisions there are some extensions to the standard
timing model published which investigate incre-
mental investment (see Pindyck (1988) for a model
investigating incremental investment and Dixit
(1995) for an incremental investment model con-
sidering scale economies). On one hand these pa-
pers present further development of the real
options theory but on the other hand they also
provide an alternative access to a set of stochastic
capacity expansion problems discussed in the past.
One early example is Manne (1961) who discusses
a stochastic capacity expansion problem with a
regenerative property, i.e. there is one capacity
decision implemented in®nitely often. Bean et al.
(1992) and Higle and Corrado (1992) investigate
expansion models transforming the stochastic
problem to its deterministic equivalent. This ap-
proach has a high potential in solving stochastic
decision problems and has to be mentioned be-
cause of its possible impact on further discussions
in real options literature. 1 (For a general survey
on capacity expansion literature see Luss (1982).)

The paper presented here is intended to discuss
optimal capacity choice in the framework of real
options theory, i.e. referring to ®nancial option
pricing, the possibility to invest in a project will be
evaluated like an American call option. The ex-
tensions which are necessary due to the freedom of
capacity choice will be derived and they will be
displayed by means of an example. In contrast to
the models of incremental investment given in
Pindyck (1988) and Dixit (1995), I want to discuss
a model, where there is only one chance to chose
the project's maximum capacity. When the ®rm
decides to exercise its option to invest it has to ®x
the capacity which will be installed. There is no
possibility to adjust the capacity when uncertain
parameters ± like prices or demand ± have changed
to unexpected values.

Firms face problems of this kind when capaci-
ty-adjustment of a ready built production facility
is not possible and the installation of an additional
project is out of discussion. There are some rea-
sons why this may be the fact. One is, that you
have the unique chance to commit the use of some
natural resource, p. ex. to build a hydrostorage
plant. Both the maximum electrical power which
can be produced as well as the investment expen-
ditures are mainly determined by the height of the
water level above the turbine, given by the height
of the dam and the height of fall inside the pen-
stock, i.e. the height of the water level corresponds
to the capacity. When the plant is completed and
the water is dammed up to a certain level, the re-
source is committed for the lifetime of the plant
(i.e. for several decades). The hypothesis of irre-
versibility of this decision is con®rmed by the fact
that enlargement of dams is very expensive and
therefore rare. (There is no project like this known
to me.) Another example is planning a hotel in the
center of a city. The capacity choice corresponds
to the determination of the number of rooms
which shall be established and this decision has to
be done during the conception phase of the pro-
ject. So the maximum capacity is ®xed. Due to the
fact that attractively situated area is limited there
is virtually no possibility to add capacity by
building a new hotel when the demand for rooms
evolves to an unexpected high level.

The standard problem of investment timing is:
As long as the option to invest is alive, the ®rm has
to decide either to keep it alive and wait or to
exercise the option, i.e. to pay the investment cost
and establish the project. But now the ®rm has to
®x the size of the project and this will cause
modi®cation in the investment strategy. As the
discussion in this paper will show, uncertainty
leads to higher values and higher marginal values
of the project. And therefore increasing uncer-
tainty will cause increasing size of the project. But
the threshold up to which opportunity costs are
positive increases fast with increasing uncertainty,
so waiting becomes more valuable and investment
is delayed to an extent which is not seen in the
standard timing model.

Abel et al. (1996) discuss a two-period model
where investment is completely expandable and

1 This method is not referenced in real options literature. I

want to acknowledge the hint given by one of the referees.
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reversible within the ®rst period, whereas ex-
pandability and reversibility can be restricted
within the second period. But in this two-period
model the begin of the second period is de®ned
exogenously and with it the moment from that on
the expandability is reduced (or vanishes at all).
Therefore this kind of two-period models cannot
be applied to the problem discussed in this paper.

Section 2 will introduce the model and the as-
sumptions to it, in Section 3 the value of the
project and the marginal value of the project are
derived. In Section 4 the optimal capacity choice
and timing strategy are determined. The sensitivity
of the results to the assumptions is discussed and
technical details of this discussion are relegated to
Appendix A. Section 5 will give a summary of the
results.

2. The model

Consider a ®rm that has the option to invest in
a production facility with maximum capacity m,
where m has to be ®xed during the conception
period of the project. That means, the maximum
capacity is ®xed for the whole lifetime of the fa-
cility (assumed to be in®nite). The ®rm faces a
demand function of the following form:

P � h�t� ÿ dq; �1�

P P 0;

where q is the output of the ®rm, P the price which
can be achieved for one unit of output and d �
ÿdP=dq describes the dependence of the price on
the output (so if the ®rm is a price-taker we have
d� 0). h(t) is the demand shift parameter that is
assumed to undergo multiplicative geometric
Brownian shocks, i.e. it follows a stochastic pro-
cess of the form

dh � ah dt � rh dz;

h�0� � h0 P 0; geometric Brownian motion; �2�
where dz is increment to a Wiener process, a the
expected relative drift of h per unit of time and r2

the relative variance per unit of time. That means,

the current value of the demand shift parameter is
known to the ®rm but future values are log-nor-
mally distributed and the variance of this distri-
bution is increasing as described above. This
stochastic process induces uncertainty and, thus
risk into the investment problem. Although the
expected value of h shows the familiar exponential
behavior �E�h�t�� � h0 eat�, the realization of this
process may stay signi®cantly above or below the
expected value for long time ranges.

To determine the pro®t ¯ow p the ®rm receives
when the project is installed, I assume the marginal
production costs c0 to be a function of the project's
size but to be constant with respect to the output
(c0 � c0(m)).

p�h;m; q� � �P �h; q� ÿ c0�m��q; 06 q6m: �3�
So the pro®t ¯ow p, which will be used to deter-
mine the value of the project, follows a stochastic
process, too. The investment costs I that have to be
payed for installation of a production facility are a
function of the facility's maximum capacity
I� I(m). They are assumed to be sunk costs and
have the general form

I�m� � bmc; c6 1; �4�
i.e. the marginal investment costs are decreasing
with increasing installed capacity.

The ®rm's task now is to observe this system
and to decide either to wait or to invest and ®x the
size of the project. As the stochastic process h is
not explicitly a function of time, the current level
of the demand shift parameter is the only system
information on which the investment decision is
based.

3. Value and marginal value of the project

When the ®rm decides to exercise the option to
invest and to install a project with capacity m it
has to pay I(m) and receives a project worth V. To
evaluate this decision it is necessary to know the
value of the project, which is a function of the
current level of the demand shift parameter h, and
the installed capacity m. The capacity m is ®xed
over the project's lifetime and the future motion of
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h is a realization of the process de®ned by (2). So
the derivation of V follows the standard approach
(see Pindyck, 1991; Dixit and Pindyck, 1994) using
Dynamic Programming.

The ®rm is assumed to choose its output q to
maximize V.

V �h;m� � E max
q

Z1
0

p�h�t � s�;m; q�t � s�� eÿrs ds;

�5�
where r is the individual discount rate of the ®rm
�r > a; r > 0�.

The optimal output q is found by maximizing
the pro®t ¯ow p at every point. i.e. to adjust the
output instantaneously with the objective of
maximizing the current pro®t ¯ow when the level
of the demand shift parameter h has changed.
Using (3) gives

q�h;m� �
0; h < c0;

�hÿ c0�=2d; c06 h < c0 � 2dm;

m; c0 � 2dm6 h:

8><>: �6�

We get the boundary values h1� c0 and h2�
c0 + 2dm, that de®ne three ranges for h: R1 �
�0; h1�; R2 � �h1; h2�; R3 � �h2;1�
p�h;m; q�h;m�� � p�h;m�

�
p1�h;m� � 0; h 2 R1;

p2�h;m� � �hÿ c0�2=4d; h 2 R2;

p3�h;m� � �hÿ c0�mÿ dm2; h 2 R3:

8><>: �7�

After substitution of Eq. (7) into Eq. (5) the cal-
culation of V will be done by the use of Dynamic
Programming:

V �h;m� � p�h;m� dt � eÿr dtE�V �h;m� � dV �h;m��:
�8�

This leads (applying Ito's Lemma, serial expansion
and neglecting terms of the order o(dt)) to the
nonhomogenous di�erential equation

1

2
r2h2 o2V

oh2
�h;m� � ah

oV
oh
�h;m�

ÿ rV � p�h;m� � 0 �9�
which has to be satis®ed by the solution for values
of h inside the three ranges Rj de®ned by Eq. (6).

The boundary conditions will be stated later.
The solution can be written as

V �h;m�jh2Rj
� Vj�h;m� � Aj;1�m�hb1 � Aj;2�m�hb2

� Vj�h;m�; j � 1 . . . 3; �10�
with b1 and b2 solving the quadratic equation

1

2
b�bÿ 1�r2 � baÿ r � 0; b1 > 1; b2 < 0: �11�

Aj;k are functions of the capacity m. Applying the
boundary conditions will determine them. V j is a
particular solution of the di�erential equations (9)
with p� pj. Eq. (12) gives particular solutions
V 1;2;3:

V j �
0; j � 1; �h 2 R1�;
1

4d
h2

r ÿ 2aÿ r2
ÿ 2c0h

r ÿ a
� c02

r

� �
; j � 2; �h 2 R2�;

hm
r ÿ a

ÿ dm2 � c0m
r

; j � 3; �h 2 R3�:

8>>>>><>>>>>:
�12�

As the demand shift parameter h is volatile, it is
able to cross the boundaries hj freely and as a
consequence to this the solution has to satisfy the
boundary conditions

V �hÿi ;m�;� V �h�i ;m�; i � 1; 2; �13a�

Vh�hÿi ;m�;� Vh�h�i ;m�; i � 1; 2: �13b�
Eqs. (13a) and (13b) de®ne four of the six pa-
rameters Aj;k of Eq. (10). Another can be deter-
mined by using a characteristic of the geometric
Brownian motion (2): 0 is an absorbing point of
the process h. As there is no pro®t ¯ow at this
point we get the condition

V �0;m� � 0: �13c�
The last boundary condition concerns the be-
havior of the solution for big values of h. For h 2
R3 growing to big values, the probability that h
will cross the boundary h2 in the near future de-
creases. Therefore one expects, that the e�ect of
the existence of the other regions vanishes, more
precisely
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lim
h!1

V � E
Z1

0

p3�h;m� eÿrt dt

0@ 1A
� hm

r ÿ a
ÿ dm2 � c0m

r
� V 3: �13d�

(The integral exists because r > a (5), selecting the
solution that does not contain speculative bubbles
gives the expression shown in Eq. (13d).) V 3 can be
called the fundamental component of solution V3

(Dixit and Pindyck, 1994) that would give the full
solution of Eq. (9) if R3 covers the whole de®nition
range �0;1� of h. This leads to the interpretation
of the remaining part of V3 �A3;1�m�hb1 �
A3;2�m�hb2� describing the deviation of V3 from the
fundamental component due to the restriction of
R3, i.e. due to the possibility that h will move
across the boundaries h1;2.

Notice, that for region R2 E
R1

0
p2�h;m�eÿrt dt

ÿ �
leads formally to V 2 (see Abel and Eberly, 1994,
Lemma 1), but interpreting V 2 as fundamental
component, which describes the project's value if
R2 covers [0, 1), is restricted to cases where
r ÿ 2aÿ r2 > 0. Otherwise there is no convergence
of the integral.

In cases, where r ÿ 2aÿ r2 � 0, no analytical
solution for V 2 can be found, but as the value of
the project V is continuous in r, a and r (substitute
Eq. (7) into Eq. (5)) V(h, m) can be de®ned stati-
cally as limr2!rÿ2a V �h;m�.

Fig. 1 shows the value V of the project for
several values of r. One can see that increasing
uncertainty in demand causes higher value V.

So far this is the standard way to calculate the
value of a project under uncertainty. Now we have
to consider that the maximum capacity of the
project m is free to choose. Assuming the ®rm
decided to invest at a level h of the demand shift
parameter, we have to answer the question, which
capacity should be installed. To do this, the mar-
ginal value of the project has to be determined.

dV �h;m�
dm

� oV �h;m�
oc0

dc0

dm
� oV �h;m�

om
: �14a�

There is no derivation with respect to h, because
dh/dm� 0.

dV �h;m�
dm

jh2Rj
� dAj;1�m�

dm
hb1 � dAj;2�m�

dm
hb2

� oV j�h;m�
oc0

dc0

dm
� oV j�h;m�

om
: �14b�

Fig. 1. Value V(h, m) of the project as function of demand shift parameter h. Calculated with r� 0.1, a� 0.02, c0 � 200, d� 1, m� 100,

r� 0, 0.1, 0.2, 0.3.
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Write this as

v�h;m�jh2Rj
� vj�h;m� � aj;1�m�hb1

� aj;2�m�hb2 � vj�h;m�: �14c�
vj can be determined by derivation of Eq. (12):

vj �
0; j � 1; �h 2 R1�;
1

4d
ÿ 2h

r ÿ a
� 2c0

r

� �
dc0

dm
; j � 2; �h 2 R2�;

h
r ÿ a

ÿ 2dm� c0

r
ÿ m

r
dc0

dm
; j � 3; �h 2 R3�:

8>>>><>>>>:
�14d�

For calculation of the aj;k comparative statics are
applied to the boundary conditions (13a)±(13d).
Investigation of Eq. (13a) gives

d

dm
�V �hÿi ;m� ÿ V �h�i ;m�� � 0;

v�hÿi ;m� � v�h�i ;m�; i � 1; 2: �15a�
Comparative static analysis of Eq. (13b) gives

d

dm
oV
oh
�hÿi ;m� ÿ

oV
oh
�h�i ;m�

� �� �
� 0:

Considering the mixed derivations o2V =oh om;
o2V =om oh; o2V =oh oc0; and o2V =ohoc0 to be con-
tinuous inside the ranges Rj leads to

o
oh

v�hÿi ;m� ÿ
o
oh

v�h�i ;m� �
o2V

oh2
�h�i ;m�

dhi

dm

ÿ o2V

oh2
�hÿi ;m�

dhi

dm
; i � 1; 2: �15b�

Eq. (15a) says that the value matching condition is
also valid for the marginal value of the project, i.e.
v is a continuous function across the boundaries h1

and h2. But (see Eq. (15b)) it is not necessarily
smooth at these boundaries; there might be a kink

at the transition from one region to the next. As
some lengthy but plain derivations (which shall
not be presented) show, o2V/oh2 de®ned by
Eqs. (10)±(12) and Eqs. (13a)±(13d) is continuous
at [0, 1). More generally this characteristic can be
deduced using the results of Feynman and Kac
(see Karatzas and Shreve, 1988, Ch. 4) together
with the fact that the pro®t ¯ow p is a continuous
function of h, so condition (15b) can be simpli®ed
to a `smooth pasting' condition:

o
oh

v�hÿi ;m� �
o
oh

v�h�i ;m�; i � 1; 2: �15b0�

Eqs. (15a) and (15b0) de®ne four of the six pa-
rameters aj;k, the remaining two parameters are
determined by inspection of the conditions (13c)
and (13d).

v�0;m� � 0; �15c�

lim
h!1

v�h;m� ÿ h
�r ÿ a� ÿ

2dm� c0

r

��
ÿm

r
dc0

dm

��
� 0: �15d�

Fig. 2 shows the marginal value v of the project as
a function of the demand shift parameter h. The
marginal value is increasing with increasing un-
certainty and, as prescribed by the boundary
conditions (15a) and (15b0), it is continuous and
smooth at the boundaries h1 (� 200) and h2

(� 400). Note, that the marginal project is only
utilized when h > h2. Otherwise the output is re-
duced below maximum capacity m. Due to the
prospect of future utilization the expected drift
and the volatility of h create a positive value of the
marginal project even if h6 h2. The asymptotic
behavior of v for h ® 1 is characterized by the
term h=�r ÿ a� of Eq. (15d) which is the net pres-
ent value of selling one (i.e. the marginal) unit of
output at the price h (h following the process (2);
the existence of the boundary h2 can be neglected
for large values of h), whereas the asymptotic
behavior of the project's value V is characterized
by �hm�=�r ÿ a� of Eq. (13d) which is the value
of selling the limit of m units at a price of h.
(Compare Fig. 1 with Fig. 2: The ratio of V to v
converges to m� 100.)

420 T. Dangl / European Journal of Operational Research 117 (1999) 415±428



4. The value of the option to invest and the optimal

investment strategy

As mentioned in the Section 1, there are two
instruments available for the ®rm to adjust its
strategy. First: To subdivide the de®nition range of
the demand shift parameter h into regions, where
the ®rm will invest immediately (`investment re-
gions'), and regions, where the ®rm will not invest
but investigate the system and accumulate further
information (`waiting regions'). Second: If h is in-
side the investment region, the ®rm has to ®x the
maximum capacity m it will install. The value, the
opportunity to invest o�ers to the ®rm, is deter-
mined by these two decisions. And it is of in the
®rms' interest to choose its strategy to maximize
the value F of this option. So the ®rm's problem
can be written as

F �h� � maxfeÿr dtE�F �h� � dF �h��;
max

m
�V �h;m� ÿ I�m��g: �16a�

The outer maximization corresponds to the gen-
eral decision whether the project should be
installed at the level h of the demand shift pa-
rameter or not. If the ®rm decides to wait (for an

in®nitesimal span of time dt) the value the ®rm
holds is just the discounted expected value of the
option after dt passed by. This is represented by
the ®rst argument of the maximization. The
second argument of the outer maximization rep-
resents the value of the project the ®rm receives
when it decides to invest reduced by the investment
cost. The inner maximization says that the
®rm, when it decides to invest, will chose the
project's capacity to maximize the value it will
receive.

As a ®rst step consider the ®rm ignores its
freedom in investment timing but decides either to
invest now or never. So it has just to ®nd the op-
timal maximum capacity m� that should be in-
stalled (m� � 0 corresponds to the decision not to
invest). Then the value of the option is

F �h� � max
m
�V �h;m� ÿ I�m�� �16b�

and the condition for an inner extremum

o
om
�V �h;m� ÿ I�m�� � v�h;m� ÿ dI�m�

dm
� 0: �17�

This is the common condition, that at the optimal
choice of the maximum capacity m� the marginal

Fig. 2. Marginal value v(h, m) of the project as function of demand shift parameter h. Uncertainty leads to an increase in the marginal

value of the project. Parameters: r� 0.1, a� 0.02, d� 1, c0 � 200, dc0/dm�ÿ1, m� 100, r� 0, 0.1, 0.2, 0.3.

T. Dangl / European Journal of Operational Research 117 (1999) 415±428 421



Fig. 3. Marginal value v(h, m) of the project as function of maximum capacity m. The optimal choice of m is at the intersection of v

and dI/dm. (a): At h� 200. Calculated with r� 0.1, a� 0.02, d� 1, c0 � 200, dc0/dm� 0, r� 0, 0.1, 0.2, and marginal investment costs

dI/dm, calculated with b� 1000, c� 0.7. Notice that without uncertainty (r� 0) there is no intersection of v and dI/dm (v < dI/dm): If

there is no freedom in timing, only the existence of uncertainty in demand will lead to investment. (b): At h� 400. Calculated with

r� 0.1, a� 0.02, d� 1, c0 � 200, dc0/dm� 0, r� 0, 0.1, 0.2, and marginal investment costs dI/dm, calculated with b� 1000, c� 0.7.

Now even without uncertainty there exists an optimal maximum capacity m� > 0. Notice that for r� 0.2 v ÿ dI/m is even positive at

m� 1000.
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value of the project has to be equal to the marginal
investment costs. But here the marginal value of
the project is in¯uenced by the uncertainty related
to the future values of h. With the results of Sec-
tion 3 one is able to ®nd solutions of Eq. (17) for
di�erent values of h numerically.

Fig. 3(a) and (b) shows the marginal value of
the project as a function of the maximum capacity
m for two levels of the demand shift parameter h
and the marginal investment costs. It can be seen,
that higher values of r cause higher marginal value
of the project and slower approach to zero. As the
optimal capacity choice m�(h) is at the intersection
of v and dI/dm (see Eq. (17)), uncertainty leads to
signi®cant higher values of installed capacity.
Furthermore it turns out that, ignoring freedom in
timing, at small values of h there is no investment
without a certain level of uncertainty. These facts
are demonstrated by Fig. 4, which shows the op-
timal choice m� de®ned by Eq. (17) as a function
of h for 3 di�erent levels of r.

After this calculation we know the net payo�
V �h;m��h�� ÿ I�m��h�� the ®rm receives in case of
immediate investment. Fig. 5 shows the high de-
pendence of this payo� on r as a consequence of

the optimal behavior referring to the capacity
choice. This fact is the special feature of this model
with one unique chance to choose the maximum
capacity and will in¯uence the optimal timing
strategy to a great extent.

To ®nd this optimal timing strategy is the task
of the following considerations. The question is: at
which levels of h is it optimal to exercise the `real
option' (investment region) and at which levels of
h is it optimal to keep the option alive (waiting
region)? As the ®rm is free to choose its investment
strategy, it can divide the de®nition range of h into
any number of intervals being waiting and in-
vestment regions alternating. But Fig. 5 shows
that V �h;m��h�� ÿ I�m��h�� is increasing with h
and that is, together with the fact that the sto-
chastic process h is a geometric Brownian motion,
a su�cient condition that the optimal timing
strategy has the following simple form (see Dixit
and Pindyck, 1994, Ch. 3, Appendix B): For h up
to a threshold h� it is optimal to keep the real
option alive, for h P h� it is optimal to invest im-
mediately. When h exceeds h� and the ®rm will
exercise its option to invest, the value of this op-
tion is known due to the calculations above. For

Fig. 4. The optimal choice of maximum capacity m�(h). m�(h) is monotonically growing with h. Uncertainty causes signi®cant higher

values of optimal installed maximum capacity. Parameters: r� 0.1, a� 0.02, d� 1, c0 � 200, dc0/dm� 0, b� 1000, c� 0.7, r� 0, 0.1, 0.2.
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h < h� F is represented by the ®rst argument of the
outer maximization in Eq. (16a):

F �h� � eÿr dt E�F �h� � dF �h��: �16c�

Applying Ito's Lemma, serial expansion and ne-
glecting terms of the order o(dt) gives the follow-
ing di�erential equation that is equal to Eq. (9) but
without the nonhomogenous term:

Fig. 5. The value of the option F to invest together with the net payo� V ÿ I. (a): For r� 0.1. The threshold h� between waiting and

investment region is at 440. (b): For r� 0.2. The threshold h� between waiting and investment region is at 1770. Common parameters:

r� 0.1, a� 0.02, d� 1, c0 � 200, dc0/dm� 0, b� 1000, c� 0.7.
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1

2
r2h2 d2F

dh2
�h� � ah

dF
dh
�h� ÿ rF � 0: �18�

Eq. (18) has a similar but simpler solution than
Eq. (9):

F �h� � C1h
b1 � C2h

b2 ; �19�
where b1 and b2 are the positive and negative so-
lutions of Eq. (11).

One boundary condition is again (see condition
(15c)) based on the fact that h is stable at 0 and as
the value V of the project is 0 there

F �0� � 0: �20a�
And therefore: C2� 0.

To avoid arbitrage pro®ts at the transition from
the waiting to the investment region one can fol-
low the second boundary condition

C1h
�b1 � V �h��;m��h���� ÿ I�m��h����: �20b�

The conditions (20a) and (20b) would be su�cient
to ®x the solution (19), if the threshold h� is given.
But h� has to be chosen to maximize the value of
the option. That is

max
h�
fC1g � max

h�

1

h�b1
�V �h�;m��h���

�
ÿI�m��h����

�
: �20c�

Condition (20c) is equivalent to the commonly
used smooth pasting condition which says that the
value F of the option has to be smooth at the
transition from the waiting to the investment re-
gion.

With Eqs. (19), (20a), (20b) and (20c) the pa-
rameter C1 (and with it the value F of the option in
the waiting region) and the threshold h� can be
determined. Fig. 5 shows the value of the option
together with the net payo� V �h;m��h�� ÿ I�m��h��
the ®rm receives in case of investment. The opti-
mal threshold h� between waiting and investment
region is at the point where the two curves meet
smoothly. This threshold is increasing enormously
with r, as a consequence of the high dependence of
the optimal choice of maximum capacity m� on r.
Table 1 shows h� and m�(h�) for 3 values of r.

(Calculations for r� 0.3 give a positive slope of C1

even at h� 3400 but m� at this point exceeds 108.)
If the demand shift parameter h is lower than

h�, the value of the real option F exceeds the net
payo� V ÿ I, and the ®rm will not invest but it will
design a project with maximum capacity m�(h�)
and wait until h reaches the threshold h�. At this
point the option to invest will be exercised. At
levels of h exceeding h� the ®rm will install a pro-
ject with maximum capacity m�(h) immediately.
Since m�(h) is monotonically growing, m�(h�) is the
smallest capacity which will be installed at all. So
the project's size is simply exploding with in-
creasing uncertainty on the one hand, but on the
other hand, this project will hardly be installed
because the waiting region is growing at the same
time. The probability that there is investment in
the near future vanishes with increasing uncer-
tainty. Even small values of uncertainty in demand
cause waiting and investigating the system the
optimal strategy for large regions of demand (see
Table 1).

This peculiar attribute of the model can be in-
terpreted as a consequence of the once and for all
characteristic of the investment decision but is,
obviously, a�ected by the particular choice of pa-
rameters and by model assumptions. The follow-
ing will discuss the sensitivity of the results to some
of these suppositions. The assumed existence of
scale economies (see Eq. (4)) is a fact that en-
courages the construction of large sized projects.
Raising the parameter c of the cost function (4)
reduces this advantage of large projects and as a
consequence it damps the optimal size of the
project. But due to the rise in investment costs the
delay of the investment is reinforced (p. ex. shifting
c from 0.7 to 0.8 changes the entries of the last row
of Table 1 to: h� � 2335, m� � 49 337; c� 0.9
yields: h� � 3136, m� � 30 647). Although the

Table 1

Optimal threshold h� between waiting and investment region

and optimal capacity choice m�(h�) at this point

r h� m�(h�)

0.05 346 210

0.1 440 592

0.2 1770 93 232

Values of m lower than m�(h�) will never be installed.
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numerical result is a�ected by the choice of c, the
quality remains: Uncertainty leads to high capac-
ities but the actual investment is delayed.

The enormous delay of investment which is
observed is advanced by the absence of an upper
limit for the maximum capacity that can be in-
stalled. Changing this assumption and de®ning a
limit for m damps both the size of the project and
the delay of the investment (see Table 2, m is
limited to 1000).

See Fig. 6 where the maximum capacity that is
optimal to install is plotted as function of h for
several values of r. For the example presented (see
Table 2): When r exceeds 0.1195, installation of
capacity below the limit of 1000 is not worth to be
discussed at all. However, increasing uncertainty
will increase the threshold h� from which on it is

optimal to exercise the option and to install the
capacity of 1000.

A core assumption to the model is the de®nition
of the demand shift parameter h following a geo-
metric Brownian motion (2), so h is log-normally

Fig. 6. The optimal choice m�(h) of maximum capacity as function of h when m is limited to 1000. (a): r� 0.05. (b): r� 0.1. (c): r� 0.2.

(d): r� 0.3. As there is no investment at values of h lower than h�, m� is plotted 0 there. Notice: Higher values of uncertainty cause

higher installed capacity but delay investment to higher values of h.

Table 2

Optimal threshold h� between waiting and investment region

and optimal capacity choice m�(h�) at this point when the

maximum capacity is limited to 1000

r h� m�(h�)

0.05 346 210

0.1 440 592

0.1195 498 993

0.2 560 1000

0.3 632 1000

Limiting the maximum capacity m that can be installed weakens

the e�ect of uncertain demand on the critical threshold h�.
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distributed and its expected value increases expo-
nentially with time. An alternative is to de®ne h as
simple Brownian motion with drift which causes
linear behavior of the expected value. The inves-
tigation of the model applying this alternative as-
sumption (see Appendix A) shows that exponential
behavior of h is in fact responsible for the enor-
mous increase in optimally installed capacity m�

and for the exceptional delay of the decision
(represented by h�) which are described above. But
the quality of the result is the same even for linear
behavior of the demand shift parameter h: In-
creasing demand uncertainty leads to an increase
in the amount of optimal capacity and to a delay
of the actual investment to receive additional de-
mand information ± although both e�ects are
weakened.

5. Summary

This paper extends the real options literature
(Dixit and Pindyck, 1994) by combining optimal
investment timing with optimal capacity choice at
the same time. Once installed, the project is com-
pletely unexpandable. Numerical investigations
show that the optimal installed capacity increases
very much with uncertainty. And this has the
consequence that investment is delayed to high
demand ranges to an extent which cannot be seen
in the standard investment timing model. So even
small uncertainty in demand makes waiting and
accumulating further information the optimal de-
cision for large ranges of demand.

Looking at the results of a model with incre-
mental investment (Pindyck, 1988), we see a con-
trary investment strategy. Uncertainty reduces the
optimal amount of installed capacity. The ten-
dency to `oversize' a project, which was investi-
gated in this paper, can be interpreted as an e�ect
of the once and for all decision. This leads to an
interesting modi®cation that could be applied to
the current model: One could inspect a chain of
possible projects where the size of each project has
to be ®xed at the time of its installation. Realizing
a project one receives not only the value of the
project but also the real option to invest in the
remaining chain. When the number of projects in

this chain is growing, the e�ect of the once and for
all characteristic of the capacity choice vanishes
and the e�ect of higher ¯exibility due to smaller
projects should dominate the decision and will
cause investment in smaller sized projects and re-
duce the threshold up to which waiting is optimal
(see Manne (1961) for a particular example).
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Appendix A

In the paper the demand shift parameter h is
assumed to follow a geometric Brownian motion
(2) so that h is log-normally distributed and the
expected value increases exponentially with time.
To investigate the sensitivity of the results to this
assumption Appendix A discusses the model with
h following a simple Brownian motion with drift
(A.2). So h is normally distributed and the ex-
pected value increases linearly with time. To keep
the description brief and clear, equation (A.x) of
Appendix A always corresponds to equation (x) in
the paper.

The demand function is given by Eq. (1), the
demand shift parameter h follows the stochastic
process

dh � a dt � r dz; Brownian motion: �A:2�

The determination of the pro®t ¯ow and the gen-
eral considerations on the project's value are not
concerned by the particular form of h therefore
Eqs. (3)±(8) are unchanged. The di�erential
equation which has to be satis®ed by the value
function is

1

2
r2 o2V

oh2
�h;m� � a

oV
oh
�h;m� ÿ rV � p�h;m� � 0:

�A:9�
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The solution of the homogenous part of this
equation is now the exponential function in con-
trast to the power function in the paper. We get

V �h;m�jh2Rj
� Vj�h;m� � Aj;1�m� ek1h � Aj;2�m� ek2h

� V j�h;m�; j � 1 . . . 3; �A:10�
where k1 and k2 are the roots of the characteristic
equation

1

2
k2r2 � kaÿ r � 0; k1 > 0; k2 < 0; �A:11�

and the particular solution V j is given by

V j �
0; j � 1; �h 2 R1�;
1

4d
�hÿ c0�2

r
� 2a�hÿ c0� � r2

r2
� a2

r3

" #
; j � 2; �h 2 R2�;

�hÿ c0�mÿ dm2

r
� am

r2
; j � 3; �h 2 R3�:

8>>>>>><>>>>>>:
�A:12�

The derivation of the value of the marginal project
v follows the same idea as sketched in the paper,
the arguments for `value matching' and smooth
pasting conditions (15a) and (15b0) are valid. The
value function of the real option to invest in the
project changes also to an exponential function
and has the form

F �h� � C1 ek1h: �A:19�
The investigation of this model with linear be-
havior of the demand shift parameter h gives re-
sults of the same quality as they are obtained with
h following a geometric Brownian motion,
whereas the e�ect is weakened: Increasing uncer-
tainty leads to a higher amount of optimal in-
stalled capacity and to a delay of the actual
investment. Table 3 displays a numerical example.
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Table 3

Optimal threshold h� between waiting and investment region

and optimal capacity choice m�(h�) at this point, h following a

simple Brownian motion

r h� m�(h�)

40 379 222

80 458 412

160 609 998

The values of a (� 8) and r are chosen so that drift and vola-

tility of Eqs. (2) and (A.2) are comparable at h� 400.
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